Orthomodular lattices, Foulis Semigroups and Dagger Kernel Categories

نویسنده

  • Bart Jacobs
چکیده

This paper is a sequel to [19] and continues the study of quantum logic via dagger kernel categories. It develops the relation between these categories and both orthomodular lattices and Foulis semigroups. The relation between the latter two notions has been uncovered in the 1960s. The current categorical perspective gives a broader context and reconstructs this relationship between orthomodular lattices and Foulis semigroups as special instance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complementarity in categorical quantum mechanics

We relate notions of complementarity in three layers of quantum mechanics: (i) von Neumann algebras, (ii) Hilbert spaces, and (iii) orthomodular lattices. Taking a more general categorical perspective of which the above are instances, we consider dagger monoidal kernel categories for (ii), so that (i) become (sub)endohomsets and (iii) become subobject lattices. By developing a ‘point-free’ defi...

متن کامل

Daggers, Kernels, Baer *-semigroups, and Orthomodularity

We discuss issues related to constructing an orthomodular structure from an object in a category. In particular, we consider axiomatics related to Baer *-semigroups, partial semigroups, and various constructions involving dagger categories, kernels, and biproducts.

متن کامل

Generalized Ideals in Orthoalgebras

Since in 1936 Birkhoff and von Neumann regarded the lattice of all closed subspaces of a separable infinite-dimensional Hilbert space that is an orthomodular lattice as a proposition system for a quantum mechanical entity (Miklós, 1998), orthomodular lattices have been considered as a mathematical model for a calculus of quantum logic. With the development of the theory of quantum logics, ortho...

متن کامل

Dagger Categories of Tame Relations

Within the context of an involutive monoidal category the notion of a comparison relation cp : X ⊗X → Ω is identified. Instances are equality = on sets, inequality ≤ on posets, orthogonality ⊥ on orthomodular lattices, non-empty intersection on powersets, and inner product 〈− |−〉 on vector or Hilbert spaces. Associated with a collection of such (symmetric) comparison relations a dagger category...

متن کامل

Distributive lattices with strong endomorphism kernel property as direct sums

Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem  2.8}). We shall determine the structure of special elements (which are introduced after  Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Logical Methods in Computer Science

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2009